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values of e and H,, the point of inflection G moves along the free surface (according to the 
results of Sect.2, g>l in this case) and subsequently passes onto the line of separation 

(then g< 1). In the example cited in Fig.1, the point of inflection G is located on the 
line of separation and has the coordinates x = 2.128 and y = -0.961. 

The author thanks D.F., Shul'gin for advice and comments which helped to improve this 
paper. 

REFERENCES 

1. POLUBARINOVA-KOCHINA P.YA., Theory of the Motion of Ground Waters, Nauka, Moscow, 1977. 
2. RIZENKAMPF B.K., On one case of water filtration in a multilayer soil, Uch. Zap. Saratov. 

Univ., Ser. Gidravliki, 15, 5, 1940. 
3. SHUL'GIN D.F. and NOVOSEL'SKII S.N., Mathematical Models and Methods of calculating 

Moisture Transport during Intraground Irrigation, in: Mathematics and Problems of Water 
Utilization, Naukova Dumka, Kiev, 1986. 

4. KOPPENFELS W. and STALLMANN F., Praxis der konformen Abbildung, Springer, Berlin, 1959. 
5. CHIBRIKOVA L.I., On the use of the Riemann boundary value problem to construct integral 

representations of certain solutions of equations of the Fuchs class, in: Theory of 
Functions of a Complex Variable, Izd. Chuvash. Univ., Cheboksary, 1983. 

6. TSITSKISHVILI A.R.,On the conformal transformation of a half plane onto curved quadrilat- 
erals, Dokl. Akad. Nauk SSSR, 233, 4, 1977. 

I. ARAVIN V.I. and NUMEROV S.N., Theory of the Motion of Liquids and Gases in an Undeformable 
Porous Medium, Gostekhizdat, Moscow, 1953. 

8. POLUBARINOVA-KOCHINA P.YA.(Ed). Development of Investigations in Filtration Theory in the 
USSR, (1917-1967), Nauka, Moscow, 1969. 

9. GRADSHTEIN I.S. and RYZHIK I.M., Tables of Integrals, Sums, Series and Products, Nauka, 
Moscow, 1971. 

10. EMIKH V.N., On the shape of a fresh water lens during filtration from a channel, Izv. 
Akad. Nauk SSSR, Mekh. Zhid. i Gazov, 2, 1966. 

Translated by E.L.S. 

PMM U.S.S.R.,Vo1.53,No.3,pp.355-361,1989 0021-8928/89 $lO.OO+O.OO 
Printed in Great Britain 01990 Pergamon Press plc 

ESTIMATES OF THE FLOW RATE CHARACTERISTICS IN THE THEORY OF 
FILTRATION AND HEAT CONDUCTION4t 

M.M. ALIMOV and E.V. SKVORTSOV 

In developing the approach proposed in /l, 2/, it is shown that it 
is possible to obtain estimates of the flow rate characeristics in the 
case of spatial, stationary linear filtration of an incompressible fluid 
in an inhomogeneous porous medium. The volume of the filtration domain 
and the area of a segment of a boundary of indeterminate form are 
employed as the decisive geometric characteristics (in the planar case, 
it is the area of the domain and the length of a segment of the boundary 
of indeterminate form). The corresponding boundary value problems are 
formulated. The subdomains of the domain of existence of a solution in 
which the extremal estimate is a lower estimate are indicated. An 
example is given. 



The description is presented in terms of filtration theory. In view 
of the known analogy between linear filtration and conductive heat 
transfer, all the assertions and conclusions apertaining to the 
efficiency coefficient are transferred to the heat transfer coefficient. 

I-Let us consider the steady state filtration of a liquid in a domain G with a boundary 
& -= 1‘ u rr J r2. In G, the pressure I' (,r) satisfies the equation and the boundary 
conditions 

(1.1) 

(1.2) 

Here k is the filtration coefficient, P is the pressure gradient at the inlet and the 
outlet of the filtration flow (P > 0) and n is the external normal unit vector with respect 
to the domain G. 

Let a certain part of the boundary of the domain have an indeterminate configuration. 
We shall denote the classes of domains having such a segment on a surface of constant 
pressure of an impermeable surface by @ and W respectively. Let y be a smooth surface, 
without points of selfintersection, which corresponds to a certain configuration of the 
segment which is being varied and let y* be a non-smooth surface which is not, generally 
speaking, very dissimilar from it. The system of local orthogonal coordinates (E, q) is 
introduced on y. The position of y* with respect to y is specified analytically by means 
of a continuous function Sn(E, 11) of the algebraic mangitude of the vector of the increment 
along the normal to y. Let us agree to assume that 6n > 0 if the above-mentioned vector 
is identical in direction to the external normal to the domain G. We shall say that the 
surface y and y* are close if one of the two conditions 

I& I<6, I r&z (E, 11) I < 6; I6nl < 6, I V 6n (E, 11) I < IT (IJ) 

is satisfied, where the magnitude of Ii is bounded and 6 is small (in particular, less than 
the minimum radius of curvature of the surface Y). Surfaces which satisfy the first of 
conditions (1.3) will also satisfy the second so that the latter defines a wider class of 
surfaces y* which will also be implied everywhere in the ensuing discussion with the 
exception of cases where something is specially said to the contrary. 

We also assume that one of the two conditions is satisfied on the edges of the surface 
Y: either the surface y is perpendicular to the surface to which it is contiguous or 6n(& TJ) 
at such points is equal to zero. Then, y*together with a specified part of the boundary ,3G 
forms a closed surface without points of selfintersection and thereby defines a certain 
physical flow domain G*. We denote the pressure distribution function, which satisfies 
Eq.(l.l) in this domain and the boundary conditions (1.2), by p* (4. 

Let us now determine the general form of the increment in the efficiency coefficient C 
as a function of the change in the configuration of a segment of y. 

Assertion I. Under the assumptions which have been made above, a variation of the 
functional c [yl in the class of domains Q can be represented in the following form: 

where x is the curvature 
of the surface y in the 

We shall present the 
auxiliary functional 

6C m= - !’ k 1% 1’ [I% - (x + T) W] do + 

j k [+ l’dl/ -t o (@), 6P = P* (x) - P 6) 
G* 

(1.4) 

of an arc of y in the case of planar flow or the mean curvature 
case of spatial flow. 
proof for spatial flow. By analogy with /l/, we introduce the 

where P (x) satisfies the boundary value Problem (l.l), (1.2). By applying Green's formula 
to it and taking account of (1.2), it can be shown that J[vl = P*C[y]. It is therefore suf- 
ficient to determine the form of the variation in the functional (1.5) while preserving the 
pressure differential. 

Let the function P (X) be analytically extendable through the surface y and, con- 
sequently, satisfy Eq.(l.l) everywhere in the domain G*. The above-mentioned variation in 
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the functional (1.5) is then representable in the form (R = (G*\G) U (G\G*) subsequently) 

(bJ),,=k [kJVplW’- [ kIV6p12dV+2 [ kVp*VApdV (1.6) 

Here and below, the plus sign refers to the domain G"\G and the minus sign to the 
domain G\G*. By applying Green's formula to the last integral in (1.6), we find that it 
be equal to 2 (6J)p. Consequently, 

(--J),=~~k~Vp[2dV-~ klVSpI*dV 

R 0’ 

We now introduce the rectilinear coordinate I; which is measured from y in the 
direction of the normal n. It is obvious that the set (&,n, 5) forms a local orthogonal 
coordinate system. The non-zero components of the metric tensor in this system will have 
form 

g,, = g,,O (1 + x16)2, l?, = &!*; (1 -I- x&P* g3, = 1 

will 

(1.7) 

the 

(1.8) 

where x1 and x, are the curvatures of the lines q = const and E= const on the surface 
y and gn" and gaSa are the components of the metric tensor on the surface y which 
satisfy its internal geometry /3/. 

By writing the differential operator (1.1) in this system of coordinates we find that 
a Vp(ia5=-IVpI(x+alnkia%) on y, where x = x, + x2 is the mean curvature of the surface y. 

We shall assume that the functions k (x) and IVP WI are analytical with respect to 
the variable 5 in the neighbourhood of y and, consequently, can be expanded in a Taylor 
series. Allowing for this and also the fact that the equality dV = (1 + x,5) (i + ~~5) deldil is 
valid in the neighbourhood of y. we integrate the first two integrals in (1.7) with respect 
to 5 from 0 to bn after which we are convinced of the validity of formula (1.4). 

Remark 1. If a variation of the functional CL?) is considered in the class of domains 
Y, then the last integral in (1.6) will be equal to zero. Hence, in this case, a variation 
in the functional (1.5) has a form which only differs from (1.7) in that it has an opposite 
sign. All the remaining arguments in the proof remain in force and the final form of thein- 
cremental growth in the efficiency coefficient in this case only differs from (1.4) in that 
it has the opposite sign. 

An integral over the domain G* occurs in the second variation of the functional c Iyl. 
This integral cannot be expressed in terms of 8n and the parameters of the flow correspond- 
ing to y. Meanwhile, it is possible to obtain certain estimates. 

Assertion 2. The following estimate holds for the integral over the domain G* occurring 
in (1.4): 

(1.9) 

Proof. Let us subdivide the flow corresponding to the configuration y* by means of 
impermeable surfaces into a set of thin tubes of flow which correspond to the flow with the 
configuration of y of the part which is being varied. The efficiency coefficient of this 
flow C', which is equal to the sum of the efficiency coefficients of the flows in each of the 
tubes taken individually, will not be greater than the real coefficient C* /4/. Let us 
assign a number to each flow tube and consider, for example, the i-th tube. 

Let Gi and Gi* be parts of the domains G and G* and let vi and 
the surfaces y and Y* which are intersected by the tube; AOi and ,,iP'*areb~h~e~mr~~~so~f 

these segments, pi(x) and Pi* Cx) are the pressures and Ci and Ci* are the efficiency coef- 
ficients of the domains Gi and Gi* respectively. By making use of Assertion 1 and taking 
account of the smallness of Aai, we find 

(1.10) 

The last term was obtained on passing from the corresponding integral in (1.4) over the 
domains Gi' to a contour integral over aGi* and allowing for the boundary conditions. 



Let us transform this term. We expand the function 
i and take account of the fact that, on account of 
b (dpi'llfl) .\Oi* = ~~~!'6(', "n yi*. By using expression 
of h. we get 

f’i ix) in a Taylor series in the variable 
the incompressibility of the liquid, 
(1.10) to within quantities of the order- 

By substituting this relationship into (1.10) and summing over i, we find, in the limit 
when A'Ti - 0, 

Allowing for the fact that bC> cl-~, we compare the last expression with (1.41, 
whereupon we are convinced of the validity of the estimate (1.9). 

By fixing one or the other of the integral geometric characteristics of the domain and 
thereby specifying a certain subclass of domains from @ or Y, one can treat isoperimetric 
problems on the extremum of the efficiency coefficient in this subclass. When account is 
taken of the estimate (1.9), the form of the second variation of the efficiency coefficient 
permits one in individual cases to judge the nature of the extremum. 

2.Let us take the volume (or, in the case of a planar flow, the area) V of the filtration 
domain as the decisive geometrical characteristic. Using (1.8), an incremental growth in 
this volume, as in the functional of the configuration of a segment of v, can be written in 
the form 

After integration over i from 0 to 6n we get 

(2.1) 

Let us now consider the problem of the extremum of the efficiency coefficient in a class 
of domains 0 which have a fixed volume. This problem belongs to a number of isoperimetric 
problems which, as is well known, reduce to the problem of the absolute extremum of a certain 
functional. In the given case, this functional is C+hV, where h is an undetermined 
constant. The necessary condition for its extremum is that the first variation should be 
equal to zero and the sufficient condition is that, additionality, the second variation 
should be strongly positive. Allowing for this and starting out from (1.4) and (2.11, we 
arrive at the boundary value Problem (1.11, (1.2) with an additional condition on the unknown 
part of the boundary 

k 1 P-’ C p / 2 = h, x E y (2.2) 

If its solution exists and the configuration of y found as a result satisfies the 
condition 

x + /P-l Vp 1 + aln k/&z> 0 (2.3) 

then a local minimum in the efficiency coefficient is ensured in the class of domains d, 
having a fixed volume. 

This problem for the planar case has been formulated in /l/. In /2/, a formulation of 
it has been given for a wide class of spatial filtration laws. It should be noted that, 
using the latter formulation on the class of domains with a fixed volume, an extremum of the 
functional is realized which, generally speaking, is not equal to the efficiency coefficient. 

A more rigourous condition than (2.3) was obtained in /2/ when k = con& and there is a 
planar flow and class of planar problems was pointed out for which the boundary value Problem 
(1.11, (1.2), (2.2) is efficiently solved. Problems inolving a more complex flow geometry and 
an exponential filtration law have been considered in /5/. 

Remark 2. If a problem on the extremum of the efficiency coefficient in a class of 
domains belonging to Y and having a fixed volume is considered then, by introducing the 
functional C--hl', we also arrive at Problem (1.11, (1.2), (2.2) with an unknown segment of 
the boundary YE P. If a solution exists and the configuration of y which is found as a 
result is convex everywhere with respect to the domain then, at the same time, a local maximum 
of the efficiency coefficient for the specified volume is realized (see Remark 1) and meanwhile 
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a local minimum in the volume of the filtration domain is realized in view of the property of 
the interdependence of isoperimetric problems when the efficiency coefficient is fixed. 

The proposal has been put forward in /4/ that "the estimte of the loss of petroleum 

throughout the volume of the limiting equilibrium pillars", which is found using a model for 
the filtration of a liquid with an initial gradient /6, 7/ is "an upper estimate”. Remark 2 
enables this to be substantiated. Let a planar domain G exist which has known boundaries 
from which a viscoplastic liquid (petroleum) is displaced by a viscous liquid (water) at 
k = const. Let us suppose that the flow was established and that a pillar of petroleum of 
unknown configuration remained close to some part or other of the impermeable boundary (Fig.1). 
In the above-mentioned model the boundary of the pillar is found from the conditions 

I VP I a %1 x E G; 1 Vp 1 = ~0, x E y (2.4) 

where y is the boundary of the pillar and Q is the initial gradient. It is obvious that 
the boundary value Problem (1.11, (1.2), (2.4) is identical to Problem (l.l), (1.2), (2.2). 
The additional condition from (2.4) which is imposed on I VP I in the domain G leads to 
the necessary condition of the convexity of the boundaries of the pillar with respect to the 
domain /8/. However, it then follows from Remark 2 that the solution of this problem realizes 
a local minimum of the area of the domain encompassed by the filtration flow when C is fixed 
and therefore enables one to estimate the loss in petroleum in the pillars from above using 
the known efficiency coefficient (here, TV is a parameter which is determined during the 
course of solving the problem). It can be shown that the above-mentioned estimate also 
remains an upper estimate in the case of those variations in y for which the points at 
which it comes into contact with the specified impermeable boundary move along the latter 
from the pillar and Remark 2 is now inapplicable. 

Fig.1 Fig.2 

3. As the decisive geometric characteristic, let us now take the area (the length in the 
case of planar flow) X of the segment y of the boundary of the domain which is being 
varied and find the form of the incremental change in Z as the incremental change in the 
functional of the configuration of y. By writing the Riemann metric (~$1)~ = g,, (dE)* i_ g,, (4)" + 

673, (W on the surface y* and allowing for the fact that, in this case, 5 = 6n (E, rl), we 
find the non-zero components of the metric tensor G,; which specifies its internal geometry 
in the local coordinates 

An incremental change in the area x of the segment y which is being varied can be 
represented in the form 

where 51 is the domain 
boundary of the domain. 
of (3.1), we find 

in the (5, q) -plane which corresponds to the segment Y of the 
Assuming that the first of conditions (1.3) is valid and making use 

Let us now consider the problem of the extremum of the efficiency coefficient in the 
class of domains from a whioh have the specified area (length) of the segment of the 
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boundary which is being varied. By using arguments which are analogous to those employed 
in Sect.2 we arrive at the boundary value problem (l.l), (1.2) with an additional condition 
on the free segment of the boundary 

!$ / I-” r/l 11 Lx, XEy (Xi) 

At the same time it may be asserted on the basis of (1.4) and (3.2) that, when \‘ is 
fixed, the convexity of the free segment of the boundary is a sufficient condition for a 
minimum in C. In the case of the filtration of a liquid in a homogeneous porous medium the 
boundary value Problem (l.l), (1.2), (3.3) is mathematically equivalent to problems in the 
theory of a jet of an ideal fluid when capillary forces are taken into account. Efficient 
methods for solving them in the case of planar flows are described in /9, lo/. 

As an example, let us consider the problem of the insulation of an infinitely long thin 
thermal conductor of circular cross-section of radius r, with a homogeneous material with a 
single thermal conductivity, where the surface of the conductor is symmetrical about the z- 
and y-axes and the problem is treated in the formulation (l-l), (1.2), (3.3). A quarter of 
the cross-section of the conductor and the insulation is shown in the upper part of Fig.2. 

Let 1 be the width of the insulation AC and L be the length of the BC. In order to 
formulate the problem correctly, it is necessary to require that the point B should be a 
point of smoothness and that point C, generally speaking,should be a salient point where the 
tangent to the boundary is discontinuously rotated through a certain angle 2na. 

Let us first find the solution of the problem regarding the insulation of a point heat 
source (the boundary AD is contracted to the point A while the flow rate is maintained). 
We introduce the complex thermal flux potential M' t -+- iv, the parametric complex variable 
u which varies in the semicircle 1 L, , ( 1, Im il > 0 ( li 1. -1.0 corresponds to the points A, B, 

Cl and the auxiliary McLeod function /lo/ 

Allowing for the form of the domains over which w and W vary, we find by means of con- 
formal mappings 

dw Z(i -a)sin(na)u" dW 29 
du.= (I2- u)” ’ du= n1/;1(u-1) 

after which the geometry of the domain is recovered by quadrature. The link between the 
dimensionless length of the arc BC and the parameter (L is defined by the formula 

L 
-7= 

2n (1 - a) + sin 2na 
2[sinna+n(l-a)cosna] ’ O\ia<l 

whence it follows that the 
Let us now return to 

point U= 1 with a radius 

problem is solvable when Lil < 2. 
the initial problem. An arc of a circle with its centre at the 
p which is small compared with unity 

p := (r/l)11 + n (1 - a)ctg nal(1 - a)-2 + 0 (r/l) 

corresponds to the boundary AD in the domain of variation in u. 
The required heat transfer coefficient is represented by the expression 

c = (ni2)[ln (p/4)-' + 0 (r/Z)]-' 

The dependence of C on L/l when r/l = 10-S is shown in Fig.2. 
Let US now show how it is possible to findlower estimates of the heat transfer coefficient 

for the conductor which has been described in the case when the cross-section G of the 
insulation has anarbitrary configuration. One such estimates can be obtained by measuring 
the area of the domain G and determining the flow rate in a problem with the insulation 
arranged in the form of a circle of this area which is concentric with the conductor. In 
order to obtain a second estimate, we symmetrize the domain G with respect to two mutually 
perpendicular axes (while not increasing the thermal flux characteristics /4/). By taking 
the larger of the semi-axes of the resulting ellipse as the characteristic length 1 and 
determining a quarter of its perimeter using the graph in Fig-Z, we find a lower estimate of 
the quantity C. 

Let us now consider the case when the domain G is an ellipse and the conductor is 
located at its centre in greater detail. The problem of a flow from a pore of radius r to 
an elliptic supply contour corresponds to the filtration interpretation. To be specific, let 
the ratio of the semi-axes be equal to 0.1 and let us take the larger semi-axis as the 
characteristic distance I. Then, when r/l = to-3 , wefind /ll/ the value of the coefficient 
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c = 0.31 and its lower estimate from the area of the ellipse C>O,27. Using the graph in 
Fig.2, we obtain the estimate from the perimeter of the ellipse CsZr_0.29. This turned out 

to be more accurate. This is explained by the fact that, in addition to the integral 
characteristic of the domain (the perimeter), the width of the insulation was also taken 
into account in the second estimate. 

When necessary, it is possible to improve the second estimate, if additional information 
concerning the length h of the segment AB (the upperpart of Fig.21 is made of. In order to 
do this, the problem which has been considered should be solved in a more general formulation 
which treats B as a salient point at which the tangent is discontinuously rotated through a 
certain angle which is determined by specifying the quantity h. 
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